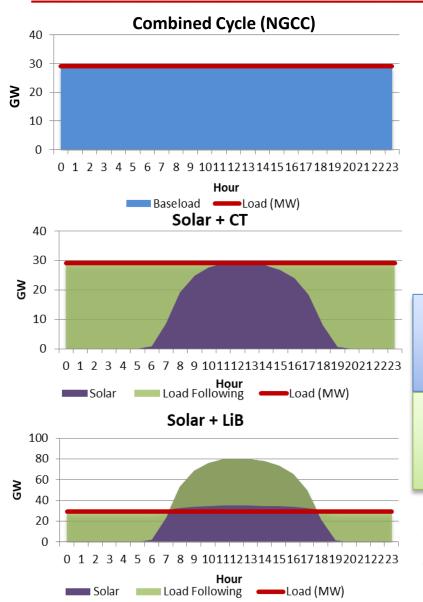

May 5, 2020

Natural Gas Role in the Clean Energy Future


Will W. Brown, PE Vice President Kinder Morgan

Delivering Energy to Improve Lives and Create a Better World

Case Study – Front Range of Colorado

GHG Comparison of Generation Sources

	САРЕХ ¹ (\$в)	Scope 1,2 ² (MMT CO _{2e}) Day 1	Scope 3 ² (MMT CO _{2e}) Day 1
Combined Cycle	49	0.26	10
Solar + CT	158	0.34	197
Wind + CT	182	0.27	75
Solar + LiB	518	0.30	657
Wind + LiB Grid-Connected	325	0.23	141

More material inputs (Scope-3 emissions) are created for RE versus the existing fossil fuel infrastructure.


Life-Cycle Analysis will become critical to assess the scope 1-3 emissions of a continuous cycle of build, maintain, replace to keep the RE machine going.

Note: Values reflect empirical seasonal and hourly variation in load and generation and average NERC grid reliability. Source: CAISO.

¹From LAZARD's Levelized Cost of Energy v12 and Levelized Cost of Storage v4 ²NREL Life Cycle Greenhouse Gas Emissions from Solor Photovoltaics, NREL Wind LCA Harmonization, IVL The Life Cycle Energy Consumption and GHG from LiB

Emissions Comparison

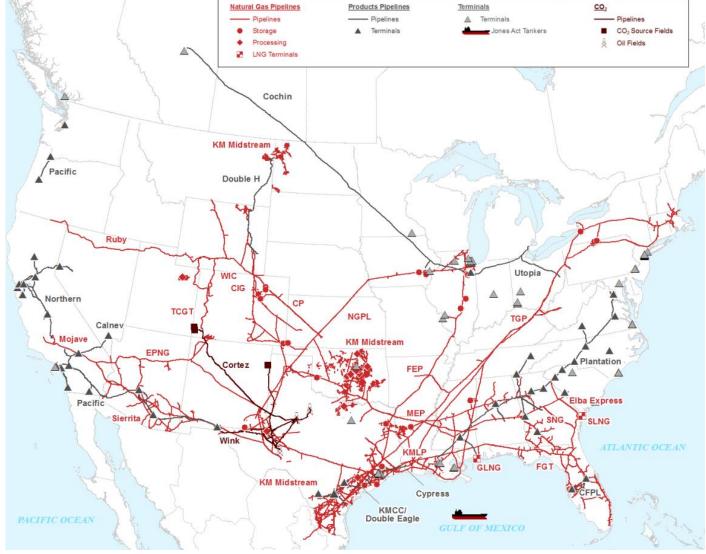
Renewable Replacement Scenarios

Summary

- The clean energy future is real and gathering pace through a combination of renewable energy technology advancements and state, national, and global climate change initiatives
- Natural Gas is abundant, energy dense, clean, cheap, efficient, dispatchable = reliable
- Natural gas pipelines facilitate and accelerate the penetration of renewable energy by providing
 - Essential reliability and resiliency
 - Cost effective generation to maintain affordable rates for consumers
- Natural gas and the infrastructure to deliver it also have been the primary source of reductions in GHG emissions and will continue to be a critical part of the clean energy future
- "Planet of the Humans" Michael Moore YouTube, 3MM Views since Earth Day (4/22/2020)

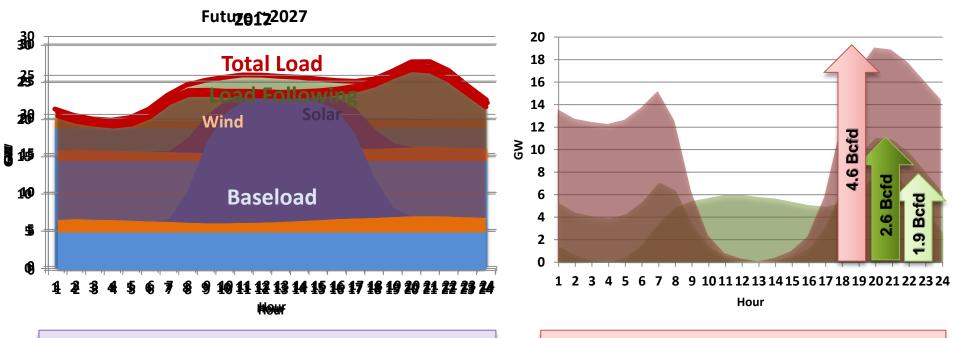
May 5, 2020

Natural Gas Role in the Clean Energy Future


Will W. Brown, PE Vice President Kinder Morgan

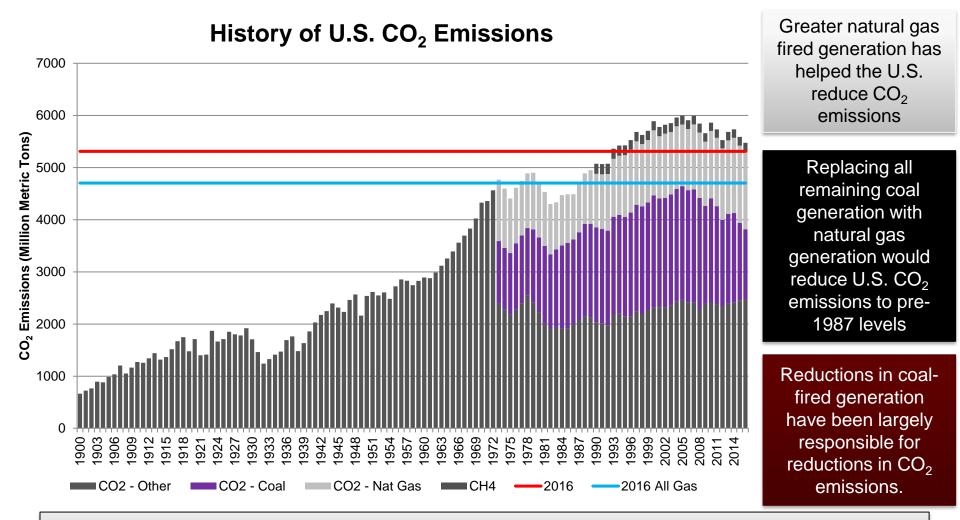
Delivering Energy to Improve Lives and Create a Better World

Appendix


Kinder Morgan Asset Map

- Largest natural gas network in North America
- Largest independent transporter of petroleum products in North America
- Largest transporter of CO₂ in North America
- Largest independent terminal operator in North America
- Western Pipelines
 - 10 Assets
 - 18,000 Miles
 - 100 BCF

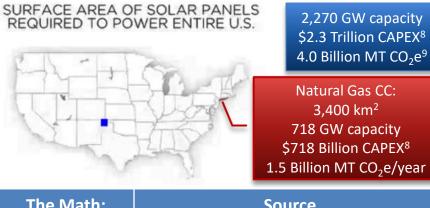
Natural Gas Complements Renewable Growth


As renewable generation increases, pipeline deliverability becomes increasingly important to natural gas-fired generation for load following

Reaching levels of renewable penetration > 50% requires excess renewable capacity, large transmission builds, AND significant energy storage capacity Higher deliverability requires more capacity reservation (No-Notice, Hourly Services), more reliance on pipeline linepack, and/or market area storage

U.S. CO₂ Emissions

CO₂ emissions grew steadily though 2006 but have been falling as a result of the shale gas revolution and displacement and retirement of coal generation.


Comparative Energy Densities

Land Area to Meet 100% of 2018 U.S. Power Generation **Energy Density** MJ/kg Source Wind/Solar 0.00006 Solar + Battery = 4,500,000 Li Ion Battery Wood 16 4,000,000 Bitumous Coal 24 Biodiesel 38 3,500,000 Crude Oil 44 Gasoline 46 3,000,000 Kerosene 46 Natural Gas 55 2,500,000 MJ/kg 3,900,000 Uranium 2,000,000 60 1,500,000 50 Wind + Battery = 40 MJ/kg 1,000,000 30 20 500,000 10 HER Nood Coal Biolice Inde 0 0 Lilon Battery Crude Oil windfolar Gasoline terosene Natural Gas Uranium Natural Gas = Long Islan

Note: Land Area for equivalent generation at 99% reliability. Natural gas land area includes power plant + sand production + natural gas wells. Solar and Wind land areas do not include land use for mining, manufacturing, or disposal.

Source: CHBC 2015; NREL 2013b; FCH Jun 2015, EIA, Natural Gas Supply Assoc., NREL

We Need a Bigger Blue Square

The Math:	Source	
4,171 ¹ TWh/year	EIA 2018 U.S. Power Generation	
476 GW	4,171 TWh/yr 8,760 hrs/yr	
21% Load Factor	NREL PVWatts for N. TX ²	
0.24 GW/km ²	1 kW/m ² x 24% module efficiency ³	
9,400 km²	$\frac{476}{0.24 \times 0.21}$	

¹EIA 2018 Total Power Generation 4,171 TWh <u>https://www.eia.gov/tools/faqs/faq.php?id=427&t=3</u> ²<u>https://pvwatts.nrel.gov/pvwatts.php</u>

³Green et al, Solar Cell Efficiency Tables (Version 45), Table 2, GaAs (thin film) ⁴EIA Real Time Grid

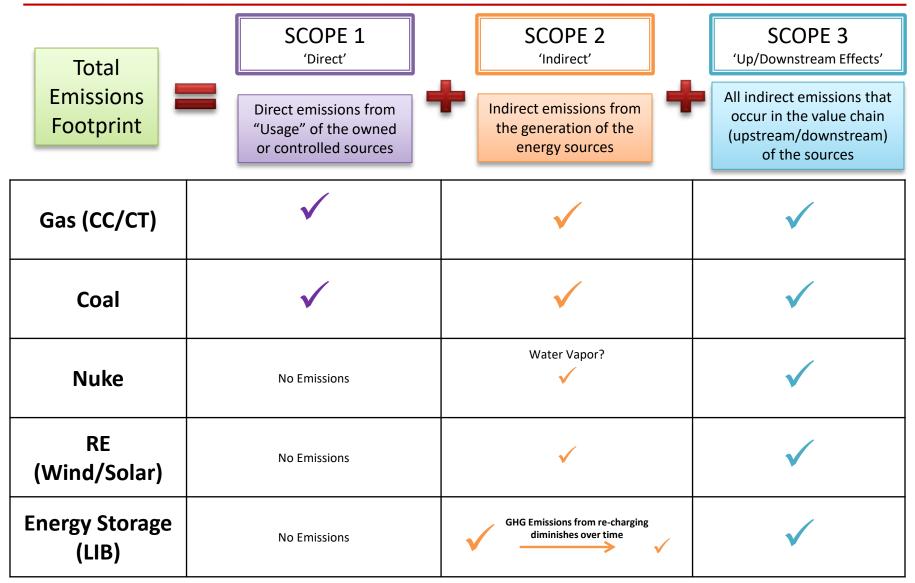
SURFACE AREA OF SOLAR PANELS REQUIRED TO POWER ENTIRE U.S. (WITH 99% | 99.9% RELIABILITY)

9,880 GW capacity \$9.9 Trillion CAPEX⁸ 18 Billion MT CO₂e⁹

23,720 GW capacity \$23.7 Trillion CAPEX⁸ 42 Billion MT CO₂e⁹

NOTE: Excludes Energy Storage Cost, CO₂e, and Land Area

The Math:	Source	Factor
14.24 TWh ⁴	EIA Peak day U.S. L48 Demand on 8/11/2016	Not used
593 GW	14,240 GWh 24 hrs	x 1.25
6.0% 2.5% Load Factor	L48 load factor at 99% 99.9% confidence ⁵ using EIA hourly generation and installed capacity. U.S. L48 avg. solar load factor is 17% ⁶	x 3.5 x 8.4
0.028 GW/km ²	NREL Total Solar Area factor ⁷	x 8.57
353,000 km² 847,000 km²	$\frac{593}{0.06 \cdot 0.028} \left \begin{array}{c} 593 \\ \hline 0.025 \cdot 0.028 \end{array} \right $	x 38 x 90


 $^5 \rm NERC\,2018\,grid$ reliability was 99.92%

⁶Load factor from NREL's PVWatts is 17.5% in center of U.S. (Kansas)

⁷NREL "Land Use for Solar Power Plants in the United States" page 17 shows 8.9 Acres/MW

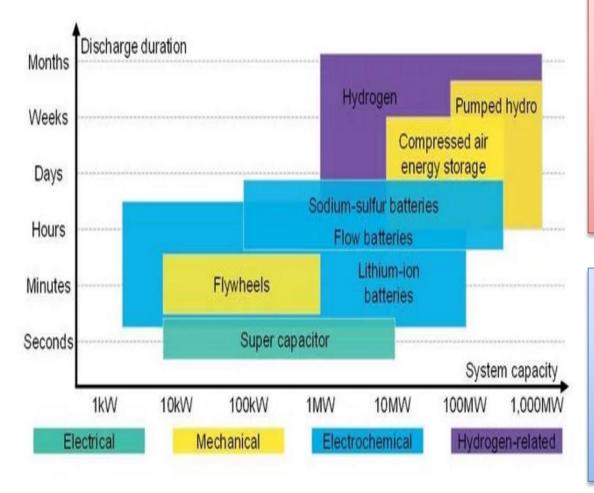
⁸ Lazard's Levelized Cost of Energy Analysis Version 13.0, using avg. CAPEX value ⁹40 kg/CO2e/MWh per NREL Life Cycle Greenhouse Gas Emissions for Solar Photovoltaics

Life Cycle Assessment of GHG Emissions

Power vs. Natural Gas Transmission

Conduit	Capacity (MW)	1 Bcfd Pipeline Equiv. Factor	Pipeline Equiv. Cost (\$MM/mile)	Pipeline Equiv. Line- Loss (%/100 miles)
1 Bcfd gas pipeline	4,750	x1.00	\$3.9	0.3%
600 kV HVDC	3,500	x1.36	\$7.2	0.7%
765 kV HVAC	2,300	x2.07	\$7.1	1.7%
500 kV HVAC	900	x5.28	\$15.6	6.9%
345 kV HVAC (double)	750	x6.33	\$13.2	26.6%

Natural gas pipelines are more efficient and more cost-effective than power transmission


Growth in renewables (typically located far away from major load centers) and electrification requires significant investment in new power transmission

Sources: ICF International Transmission assessment for EIA June, 2018; AEP Transmission Facts; KM analysis

Size and Discharge Duration by Energy Storage Technology

Cost are improving for battery technologies to penetrate the area of bulk power management applications for utility-scale operations, such as renewable backstopping and firming.

Lithium Ion battery technologies are currently suited for smaller duration such as, power smoothing (i.e VAR and frequency support), power quality, and overall grid support

Source: Bloomberg New Energy Finance. Note: system capacities and discharge durations are based on general use, rather than technical limitations.

Let's Compare Apples to Apples

"Current" Narrative	"New" Narrative	Benefits / Differences	
Capacity	Deliverability	Grid Reliability & Resiliency	
Per Unit Cost (LCOE)	Total System Cost	LCOE ≠ Total Cost of Equivalent	
	Total System	Performance	
"Tailaina"	Emissions	It's TOTAL EMISSIONS that matter	
"Tailpipe" Emissions (Scope 1)	Brownfield vs. Greenfield	Scope 1 vs. Scope 1 - 3	
	A full LifeCycle Assessment (LCA)	Although imperfect, an LCA per MWh of load served must be performed in order to achieve consistent comparison of investment alternatives	
VS. VS. VS. VS. VS. VS. VS. VS.			

The Industry needs to influence policy makers at all levels (Federal/State/Local) to embrace new narrative when discussing clean energy and climate related goals.