

# WESTERN EIM BENEFITS REPORT

# First Quarter 2020

April 30, 2020

## CONTENTS

| EXECUTIVE SUMMARY                                                                              | 3  |
|------------------------------------------------------------------------------------------------|----|
| BACKGROUND                                                                                     | 4  |
| WESTERN EIM ECONOMIC BENEFITS IN Q1 2020                                                       | 4  |
| CUMULATIVE EIM BENEFITS SINCE INCEPTION<br>INTER-REGIONAL TRANSFERS<br>WHEEL THROUGH TRANSFERS | 5  |
| REDUCED RENEWABLE CURTAILMENT AND GHG REDUCTIONS                                               | 15 |
| FLEXIBLE RAMPING PROCUREMENT DIVERSITY SAVINGS                                                 | 16 |
| CONCLUSION                                                                                     | 19 |

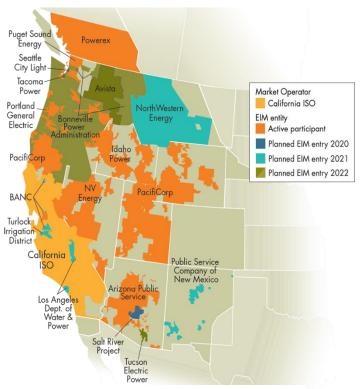
# **EXECUTIVE SUMMARY**

# Gross benefits from EIM since November 2014 **\$919.69 million**

This report presents the benefits associated with participation in the Western Energy Imbalance Market (EIM) for the first quarter of 2020.

The measured benefits of participation in the Western EIM include cost savings, increased integration of renewable energy, and improved operational efficiencies including the reduction of the need for real-time flexible reserves.

This analysis demonstrates the benefit of economic dispatch in the real time market across a larger EIM footprint with more diverse resources and geography.


#### Q1 2020 Gross Benefits by Participant

|                           | (millions \$) |
|---------------------------|---------------|
| Arizona Public Service    | \$11.26       |
| BANC                      | \$7.07        |
| California ISO            | \$9.57        |
| Idaho Power               | \$5.15        |
| NV Energy                 | \$5.36        |
| PacifiCorp                | \$7.80        |
| Portland General Electric | \$6.93        |
| Puget Sound Energy        | \$3.67        |
| Powerex                   | \$1.09        |
| Total                     | \$57.90       |

\*EIM Quarterly Benefit Report Methodology, https://www.caiso.com/Documents/EIM\_BenefitMethodology.pdf

\*\*The GHG emission reduction reported is associated with the avoided curtailment only. The current market process and counterfactual methodology cannot differentiate the GHG emissions resulting from serving ISO load via the EIM versus dispatch that would have occurred external to the ISO without the EIM. For more details, see

http://www.caiso.com/Documents/GreenhouseGasEmissionsTrackingReport-FrequentlyAskedQuestions.pdf



# 2020 Q1 BENEFITS

# ECONOMICAL \$57.90M

Gross benefits realized due to more efficient inter-and intraregional dispatch in the Fifteen-Minute Market (FMM) and Real-Time Dispatch (RTD)\*

# ENVIRONMENTAL

**37,125** Metric tons of CO<sub>2</sub>\*\* avoided curtailments

#### **OPERATIONAL**

46%

Average reduction in flexibility reserves across the footprint

#### FIRST QUARTER 2020

# **BACKGROUND**

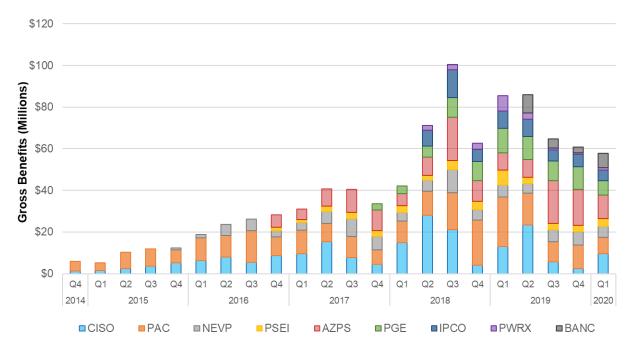
The Western EIM began financially binding operation on November 1, 2014 by optimizing resources across the ISO and PacifiCorp Balancing Authority Areas (BAAs). NV Energy began participating in December 2015, Arizona Public Service and Puget Sound Energy began participating in October 2016, and Portland General Electric began participating in October 2017. Idaho Power and Powerex began participating on April 4, 2018. Most recently, the Balancing Authority of Northern California (BANC)<sup>1</sup>, began participating on April 3, 2019. The EIM footprint now includes portions of Arizona, California, Idaho, Nevada, Oregon, Utah, Washington, Wyoming, and extends to the border with Canada.

The ISO began publishing quarterly EIM benefit reports in April 2015. Prior reports are available at <a href="https://www.westerneim.com/Pages/About/QuarterlyBenefits.aspx">https://www.westerneim.com/Pages/About/QuarterlyBenefits.aspx</a>.

# **WESTERN EIM ECONOMIC BENEFITS IN Q1 2020**

Table 1 shows the estimated EIM gross benefits by each region per month<sup>2</sup>. The monthly savings presented show \$17.21 million for January, \$17.42 million for February, and \$23.27 million for March with a total estimated benefit of \$57.90 million for the quarter.

| Region | January | February | March   | Total   |
|--------|---------|----------|---------|---------|
| APS    | \$4.10  | \$3.48   | \$3.68  | \$11.26 |
| BANC   | \$1.66  | \$1.26   | \$4.15  | \$7.07  |
| CISO   | \$2.57  | \$2.91   | \$4.09  | \$9.57  |
| IPCO   | \$1.66  | \$1.43   | \$2.06  | \$5.15  |
| NVE    | \$1.10  | \$1.80   | \$2.46  | \$5.36  |
| PAC    | \$2.22  | \$2.46   | \$3.12  | \$7.80  |
| PGE    | \$2.46  | \$2.34   | \$2.13  | \$6.93  |
| PSE    | \$1.16  | \$1.23   | \$1.28  | \$3.67  |
| PWRX   | \$0.28  | \$0.51   | \$0.30  | \$1.09  |
| Total  | \$17.21 | \$17.42  | \$23.27 | \$57.90 |


TABLE 1: First Quarter 2020 benefits in millions USD by month

<sup>&</sup>lt;sup>1</sup> The benefits reflect the Sacramento Municipal Utility District as the participating resource within BANC.

<sup>&</sup>lt;sup>2</sup> The EIM benefits reported here are calculated based on available data. Intervals without complete data are excluded in the calculation. The intervals excluded due to unavailable data are normally within a few percent of the total intervals.

#### **CUMULATIVE EIM BENEFITS SINCE INCEPTION**

Since the start of the EIM in November 2014, the cumulative economic benefits have totaled \$919.69 million. The quarterly benefits have grown over time as a result of the participation of new Balancing Authority Areas (BAA) in the market, which results in additional benefits for both the individual BAA but also compounds the benefits to adjacent BAA's by enabling further transfers. Graph 1 illustrates the gross economic benefits of the EIM by quarter for each participating BAA.



**GRAPH 1: Cumulative gross benefits since the inception of the EIM** 

### INTER-REGIONAL TRANSFERS

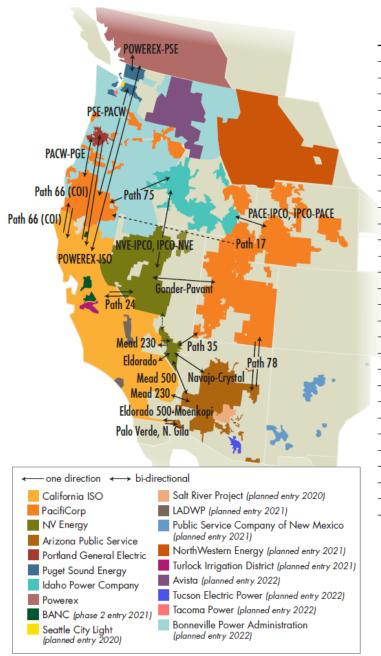
A significant contributor to EIM benefits is transfers across balancing areas, providing access to lower cost supply, while factoring in the cost of compliance with greenhouse gas (GHG) emissions regulations when energy is transferred into the ISO. As such, the transfer volumes are a good indicator of a portion of the benefits attributed to the EIM. Transfers can take place in both the 15-Minute Market and Real-Time Dispatch (RTD).

Generally, transfer limits are based on transmission and interchange rights that participating balancing authority areas make available to the EIM, with the exception of the PacifiCorp West (PACW) -ISO transfer limit and the Portland General Electric (PGE) -ISO transfer limit in RTD. These RTD transfer capacities between PACW/PGE and the ISO are determined based on the allocated dynamic transfer capability driven by system operating conditions. This report does not quantify a BAA's opportunity cost that the utility considered when using its transfer rights for the EIM.

Table 2 provides the 15-minute and 5-minute EIM transfer volumes with base schedule transfers excluded. The EIM entities submit inter-BAA transfers in their base schedules. The

benefits quantified in this report are only attributable to the transfers that occurred through the EIM. The benefits do not include any transfers attributed to transfers submitted in the base schedules that are scheduled prior to the start of the EIM.

The transfer from BAA\_x to BAA\_y and the transfer from BAA\_y to BAA\_x are separately reported. For example, if there is a 100 Megawatt-Hour (MWh) transfer during a 5-minute interval, in addition to a base transfer from ISO to NVE, it will be reported as 100 MWh from\_BAA ISO to\_BAA NEVP, and 0 MWh from\_BAA NEVP to\_BAA ISO in the opposite direction. The 15-minute transfer volume is the result of optimization in the 15-minute market using all bids and base schedules submitted into the EIM. The 5-minute transfer volume is the result of optimization using all bids and base schedules submitted into the EIM. The 5-minute transfer volume is the result of optimization transfer volume is the result of optimization using all bids and base schedules submitted into EIM, based on unit commitments determined in the 15-minute market optimization. The maximum transfer capacities between EIM entities are shown in Graph 2 below.


| Month   | From BAA | Το ΒΑΑ | 15min EIM<br>transfer | 5min EIM<br>transfer |
|---------|----------|--------|-----------------------|----------------------|
|         |          |        | (15m - base)          | (5m - base)          |
|         | AZPS     | CISO   | 146,580               | 118,035              |
|         | AZPS     | NEVP   | 4,396                 | 7,516                |
|         | AZPS     | PACE   | 31,022                | 34,140               |
|         | BANC     | CISO   | 5,218                 | 3,705                |
|         | CISO     | AZPS   | 51,059                | 62,838               |
|         | CISO     | BANC   | 102,749               | 115,280              |
|         | CISO     | PWRX   | 33,513                | 49,461               |
|         | CISO     | NEVP   | 70,572                | 94,165               |
|         | CISO     | PACW   | 24,582                | 41,224               |
|         | CISO     | PGE    | 23,995                | 48,442               |
|         | IPCO     | NEVP   | 36,003                | 19,786               |
|         | IPCO     | PACE   | 11,976                | 10,826               |
|         | IPCO     | PACW   | 32,504                | 40,927               |
|         | IPCO     | PSEI   | 0                     | 0                    |
|         | NEVP     | AZPS   | 6,365                 | 4,578                |
|         | NEVP     | CISO   | 82,274                | 40,914               |
|         | NEVP     | IPCO   | 26,080                | 28,996               |
| January | NEVP     | PACE   | 91,058                | 100,398              |
|         | PACE     | AZPS   | 94,262                | 72,968               |
|         | PACE     | IPCO   | 52,866                | 63,932               |
|         | PACE     | NEVP   | 45,373                | 30,234               |

|          | PACE | PACW | 21,566  | 29,096  |
|----------|------|------|---------|---------|
|          | PACW | CISO | 85,524  | 104,694 |
|          | PACW | IPCO | 45,622  | 29,565  |
|          | PACW | PGE  | 42,483  | 44,254  |
|          | PACW | PSEI | 21,578  | 23,446  |
|          | PGE  | CISO | 3,272   | 3,010   |
|          | PGE  | PACW | 57,741  | 60,642  |
|          | PGE  | PSEI | 1,947   | 2,309   |
|          | PSEI | PWRX | 36,840  | 38,452  |
|          | PSEI | IPCO | 0       | 0       |
|          | PSEI | PACW | 52,512  | 53,785  |
|          | PSEI | PGE  | 2,755   | 2,883   |
|          | PWRX | CISO | 0       | 0       |
|          | PWRX | PSEI | 12,029  | 15,666  |
|          | AZPS | CISO | 110,197 | 84,590  |
|          | AZPS | NEVP | 1,243   | 2,031   |
|          | AZPS | PACE | 49,481  | 67,028  |
|          | BANC | CISO | 15,318  | 12,762  |
|          | CISO | AZPS | 62,791  | 90,838  |
|          | CISO | BANC | 53,241  | 62,792  |
|          | CISO | PWRX | 50,290  | 61,234  |
|          | CISO | NEVP | 125,094 | 129,734 |
|          | CISO | PACW | 24,058  | 38,847  |
|          | CISO | PGE  | 26,134  | 48,985  |
|          | IPCO | NEVP | 26,689  | 17,026  |
|          | IPCO | PACE | 39,221  | 30,664  |
| February | IPCO | PACW | 29,334  | 35,149  |
|          | IPCO | PESI | 1,300   | 2,160   |
|          | NEVP | AZPS | 17,018  | 12,257  |
|          | NEVP | CISO | 120,880 | 74,392  |
|          | NEVP | IPCO | 41,426  | 40,715  |
|          | NEVP | PACE | 100,130 | 103,027 |
|          | PACE | AZPS | 61,353  | 46,796  |
|          |      |      |         |         |

|       |      | I    |         |         |
|-------|------|------|---------|---------|
|       | PACE | IPCO | 13,289  | 13,872  |
|       | PACE | NEVP | 35,684  | 19,018  |
|       | PACE | PACW | 9,754   | 17,294  |
|       | PACW | CISO | 67,058  | 79,157  |
|       | PACW | IPCO | 29,470  | 20,974  |
|       | PACW | PGE  | 17,822  | 17,247  |
|       | PACW | PSEI | 13,828  | 18,807  |
|       | PGE  | CISO | 2,545   | 2,104   |
|       | PGE  | PACW | 85,897  | 88,355  |
|       | PGE  | PSEI | 3,293   | 4,241   |
|       | PSEI | PWRX | 31,655  | 32,500  |
|       | PSEI | IPCO | 3,941   | 2,749   |
|       | PSEI | PACW | 57,737  | 60,498  |
|       | PSEI | PGE  | 2,481   | 2,588   |
|       | PWRX | CISO | 0       | 0       |
|       | PWRX | PSEI | 8,880   | 10,174  |
|       | AZPS | CISO | 92,088  | 73,985  |
|       | AZPS | NEVP | 1,721   | 4,264   |
|       | AZPS | PACE | 50,487  | 64,233  |
|       | BANC | CISO | 19,643  | 15,780  |
|       | CISO | AZPS | 57,988  | 73,220  |
|       | CISO | BANC | 62,205  | 68,134  |
|       | CISO | PWRX | 42,058  | 54,981  |
|       | CISO | NEVP | 96,890  | 108,966 |
|       | CISO | PACW | 30,926  | 44,195  |
|       | CISO | PGE  | 26,517  | 56,148  |
|       | IPCO | NEVP | 32,182  | 23,767  |
|       | IPCO | PACE | 24,923  | 26,958  |
|       | IPCO | PACW | 37,485  | 54,883  |
|       | IPCO | PSEI | 0       | 0       |
| March | NEVP | AZPS | 6,574   | 5,579   |
|       | NEVP | CISO | 125,012 | 89,517  |
|       | NEVP | IPCO | 35,922  | 47,472  |

| NEVP | PACE | 83,215 | 83,860 |
|------|------|--------|--------|
| PACE | AZPS | 38,155 | 29,430 |
| PACE | IPCO | 17,877 | 24,656 |
| PACE | NEVP | 30,556 | 17,372 |
| PACE | PACW | 33,457 | 46,451 |
| PACW | CISO | 66,383 | 75,005 |
| PACW | IPCO | 35,194 | 24,962 |
| PACW | PGE  | 31,274 | 31,354 |
| PACW | PSEI | 26,528 | 33,045 |
| PGE  | CISO | 6,300  | 5,556  |
| PGE  | PACW | 46,068 | 49,875 |
| PGE  | PSEI | 5,073  | 6,446  |
| PSEI | PWRX | 18,503 | 22,492 |
| PSEI | IPCO | 2,501  | 1,944  |
| PSEI | PACW | 51,373 | 49,594 |
| PSEI | PGE  | 4,752  | 5,350  |
| PWRX | CISO | 0      | 0      |
| PWRX | PSEI | 25,899 | 25,663 |

TABLE 2: Energy transfers (MWh) in the FMM and RTD markets for Q1 2020



| Path                   | Estimated Max<br>Capacity (MW)  |
|------------------------|---------------------------------|
| Path 24 (west to east) | 100                             |
| Path 24 (east to west) | 35-90                           |
| Eldorado               | 797                             |
| Path 35 (west to east) | 580                             |
| Path 35 (east to west) | 538                             |
| Gonder-Pavant          | 130                             |
| PACW to PGE            | 320                             |
| Path 66 (ISO to PGE)   | 627                             |
| Path 66 (PGE to ISO)   | 296                             |
| Path 66 (ISO to PACW)  | 331                             |
| Path 66 (PACW to ISO)  | 432                             |
| Path 17                | 0-400 <sup>1</sup> <sup>2</sup> |
| PSE to PACW            | 300                             |
| Eldorado 500-Moenkopi  | 732                             |
| Palo Verde, N. Gila    | 3,151                           |
| Path 78 (PACE to APS)  | 625                             |
| Path 78 (APS to PACE)  | 660                             |
| Navajo-Crystal         | 522                             |
| Mead 500               | 349                             |
| Mead 230 (APS <-> ISO) | 236                             |
| Mead 230 (ISO to NVE)  | 3,443                           |
| Mead 230 (NVE to ISO)  | 3,476                           |
| IPCO to PACW (Path 75) | 1,500                           |
| PACW to IPCO (Path 75) | 400-510                         |
| PACE to IPCO           | 2,557                           |
| IPCO to PACE           | 1,550                           |
| NVE to IPCO            | 262                             |
| IPCO to NVE            | 390-478                         |
| Powerex <-> PSE        | 150                             |
| Powerex <-> ISO        | 150                             |

<sup>1</sup> Is an optional path available for PACE-PACW EIM transfers and the capacity is a subset of PACE-IPCO/IPCO-PACE and Path 75 capacity.
<sup>2</sup> When in use, the available capacity on PACE-IPCO/IPCO-PACE and Path 75 will be subsequently reduced by the used amount on Path 17, and not double counted.

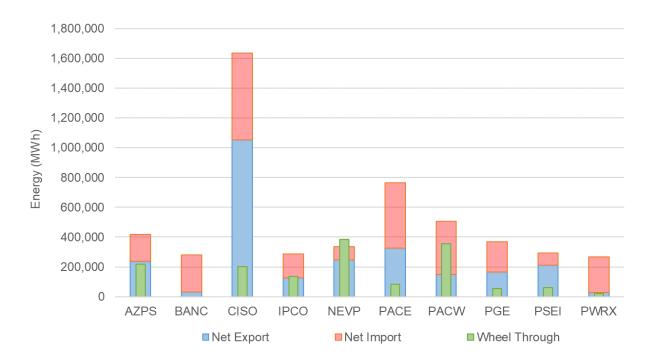
Current as of October 2019

#### **GRAPH 2: Estimated maximum transfer capacity (EIM entities operating in Q1 2020)**

#### WHEEL THROUGH TRANSFERS

As the footprint of the Western EIM grows and continues to change, wheel-through transfers may become more common. Currently, an EIM entity facilitating a wheel through receives no direct financial benefit for facilitating the wheel; only the sink and source directly benefit. As part of the Western EIM Consolidated Initiatives stakeholder process, the ISO committed to monitoring the wheel through volumes to assess whether, after the addition of new EIM entities, there is a potential future need to pursue a market solution to address the equitable sharing of wheeling benefits.

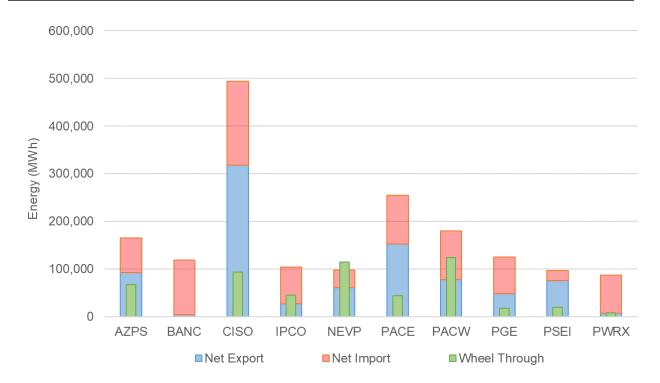
The ISO will continue to track the volume of wheel-through transfers in the EIM market in the quarterly reports. In order to derive the wheel-through transfers for each EIM BAA, the ISO uses the following calculation for every real-time interval dispatch:


- Total import: summation of transfers above base transfers coming into the EIM BAA under analysis
- *Total export*: summation of all transfers above base transfers going out of the EIM BAA under analysis
- Net import: the maximum of zero or the difference between total imports and total exports
- *Net export*: the maximum of zero or the difference between total exports and total imports
- Wheel through: the minimum of the EIM transfers into (total import) or EIM transfer out (total export) of a BAA for a given interval

All wheel-through transfers are summed over both the month and the quarter. This volume reflects the total wheel-through transfers for each EIM BAA, regardless of the potential paths used to wheel through. The net imports and exports estimated in this section reflect the overall volume of net imports and exports; in contrast, the imports and exports provided in Table 2 reflect the gross transfers between two EIM BAAs.

The metric is measured as energy in MWh for each month and the corresponding calendar quarter, as shown in Tables 3 through 6 and Graphs 3 through 6.

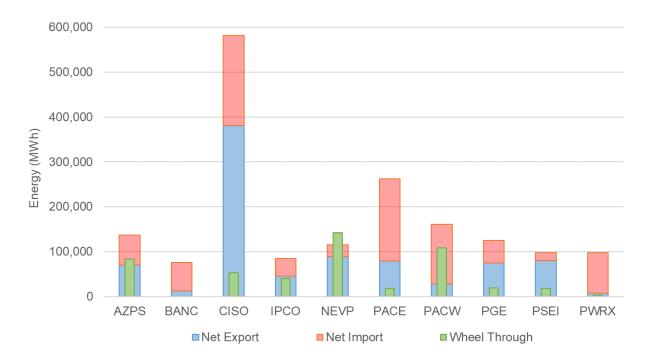
| BAA  | Net Export | Net Import | Wheel Through |
|------|------------|------------|---------------|
| AZPS | 237,528    | 181,011    | 218,657       |
| BANC | 32,285     | 246,733    | -             |
| CISO | 1,051,716  | 583,098    | 201,248       |
| IPCO | 125,432    | 162,999    | 137,416       |
| NEVP | 248,060    | 89,481     | 385,682       |
| PACE | 326,984    | 438,008    | 84,689        |
| PACW | 148,313    | 357,286    | 354,935       |
| PGE  | 167,047    | 201,921    | 55,808        |
| PSEI | 212,129    | 80,877     | 61,317        |
| PWRX | 29,587     | 237,667    | 22,007        |


TABLE 3: Estimated wheel-through transfers in Q1 2020



#### GRAPH 3: Estimated wheel-through transfers in Q1 2020

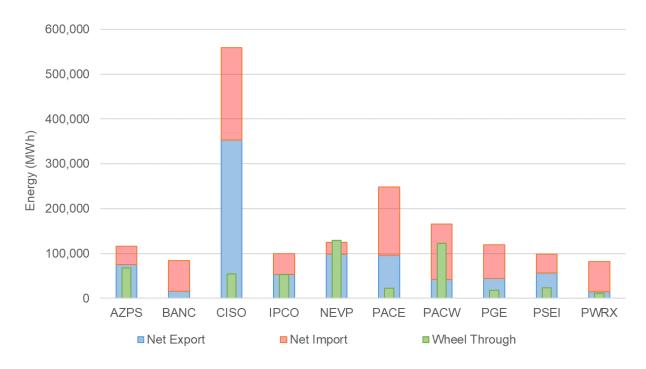
| BAA  | Net Export | Net Import | Wheel-Through |
|------|------------|------------|---------------|
| AZPS | 92,296     | 73,054     | 67,396        |
| BANC | 3,721      | 115,327    | -             |
| CISO | 317,916    | 176,457    | 93,950        |
| IPCO | 26,753     | 77,760     | 44,810        |
| NEVP | 60,510     | 37,207     | 114,600       |
| PACE | 152,580    | 101,859    | 43,690        |
| PACW | 77,837     | 101,686    | 124,232       |
| PGE  | 47,800     | 77,483     | 18,189        |
| PSEI | 75,354     | 21,614     | 19,853        |
| PWRX | 7,416      | 79,735     | 8,260         |


TABLE 4: Estimated wheel-through transfers in January 2020



#### GRAPH 4: Estimated wheel-through transfers in January 2020

| BAA  | Net Export | Net Import | Wheel- Through |
|------|------------|------------|----------------|
| AZPS | 70,052     | 67,031     | 83,672         |
| BANC | 12,783     | 63,100     | -              |
| CISO | 380,979    | 200,112    | 53,045         |
| IPCO | 45,710     | 38,732     | 39,677         |
| NEVP | 88,845     | 25,773     | 142,277        |
| PACE | 78,731     | 183,309    | 18,336         |
| PACW | 27,994     | 132,460    | 108,367        |
| PGE  | 75,164     | 49,265     | 19,663         |
| PSEI | 80,430     | 17,110     | 18,302         |
| PWRX | 7,185      | 90,982     | 3,019          |


TABLE 5: Estimated wheel-through transfers in February 2020



#### **GRAPH 5: Estimated wheel-through transfers in February 2020**

| BAA  | Net Export | Net Import | Wheel Through |
|------|------------|------------|---------------|
| AZPS | 75,180     | 40,926     | 67,589        |
| BANC | 15,781     | 68,306     | -             |
| CISO | 352,821    | 206,528    | 54,252        |
| IPCO | 52,969     | 46,507     | 52,928        |
| NEVP | 98,705     | 26,500     | 128,805       |
| PACE | 95,672     | 152,839    | 22,663        |
| PACW | 42,481     | 123,140    | 122,336       |
| PGE  | 44,082     | 75,174     | 17,956        |
| PSEI | 56,345     | 42,152     | 23,162        |
| PWRX | 14,986     | 66,951     | 10,728        |

#### TABLE 6: Estimated wheel-through transfers in March 2020



#### **GRAPH 6: Estimated wheel-through transfers in March 2020**

# REDUCED RENEWABLE CURTAILMENT AND GHG REDUCTIONS

The Western EIM benefit calculation includes the economic benefits that can be attributed to avoided renewable curtailment within the ISO footprint. If not for energy transfers facilitated by the EIM, some renewable generation located within the ISO would have been curtailed via either economic or exceptional dispatch. The total avoided renewable curtailment volume in MWh for Q1 2020 was calculated to be 23,977 MWh (January) + 33,575 MWh (February) + 29,188 MWh (March) = 86,740 MWh total.

There are environmental benefits of avoided renewable curtailment as well. Under the assumption that avoided renewable curtailments displace production from other resources at a default emission rate of 0.428 metric tons  $CO_2/MWh$ , avoided curtailments displaced an estimated 37,125 metric tons of  $CO_2$  for Q1 2020. Avoided renewable curtailments also may have contributed to an increased volume of renewable credits that would otherwise have been unavailable. This report does not quantify the additional value in dollars associated with this benefit. Total estimated reductions in the curtailment of renewable energy along with the associated reductions in  $CO_2$  are shown in Table 7.

| Year | Quarter MWh Eq. Tons |        | Eq. Tons CO2 |
|------|----------------------|--------|--------------|
|      | 1                    | 8,860  | 3,792        |
| 2015 | 2                    | 3,629  | 1,553        |
|      | 3                    | 828    | 354          |
|      | 4                    | 17,765 | 7,521        |

|      | 1     | 112,948   | 48,342  |
|------|-------|-----------|---------|
| 2016 | 2     | 158,806   | 67,969  |
|      | 3     | 33,094    | 14,164  |
|      | 4     | 23,390    | 10,011  |
|      | 1     | 52,651    | 22,535  |
| 2017 | 2     | 67,055    | 28,700  |
|      | 3     | 23,331    | 9,986   |
|      | 4     | 18,060    | 7,730   |
|      | 1     | 65,860    | 28,188  |
| 2018 | 2     | 129,128   | 55,267  |
|      | 3     | 19,032    | 8,146   |
|      | 4     | 23,425    | 10,026  |
|      | 1     | 52,254    | 22,365  |
| 2019 | 2     | 132,937   | 56,897  |
|      | 3     | 33,843    | 14,485  |
|      | 4     | 35,254    | 15,089  |
| 2020 | 1     | 86,740    | 37,125  |
|      | Total | 1,098,890 | 470,245 |

TABLE 7: Total reduction in curtailment of renewable energy and the associated reductions in CO<sub>2</sub>

### FLEXIBLE RAMPING PROCUREMENT DIVERSITY SAVINGS

The Western EIM facilitates procurement of flexible ramping capacity in the FMM to address variability that may occur in the RTD. Because variability across different BAAs may happen in opposite directions, the flexible ramping requirement for the entire EIM footprint can be less than the sum of individual BAA's requirements. This difference is known as flexible ramping procurement diversity savings. Starting in 2016, the ISO replaced the flexible ramping constraint with flexible ramping products that provide both upward and downward ramping. The minimum and maximum flexible ramping requirements for each BAA and for each direction are listed in Table 8.

| Month | BAA  | Direction | Minimum requirement | Maximum<br>requirement |
|-------|------|-----------|---------------------|------------------------|
|       | AZPS | up        | 21                  | 230                    |
|       | BANC | up        | 3                   | 58                     |
|       | CISO | up        | 37                  | 1716                   |

|          | IPCO    | up   | 28  | 143   |
|----------|---------|------|-----|-------|
|          | NEVP    | up   | 0   | 291   |
|          | PACE    | up   | 78  | 252   |
|          | PACW    | up   | 46  | 162   |
|          | PGE     | up   | 35  | 206   |
|          | PSEI    | up   | 27  | 158   |
|          | PWRX    | up   | 51  | 231   |
| January  | ALL EIM | up   | 36  | 1,962 |
|          | AZPS    | down | 11  | 275   |
|          | BANC    | down | 8   | 95    |
|          | CISO    | down | 171 | 1,530 |
|          | IPCO    | down | 54  | 196   |
|          | NEVP    | down | 0   | 267   |
|          | PACE    | down | 80  | 291   |
|          | PACW    | down | 19  | 146   |
|          | PGE     | down | 46  | 217   |
|          | PSEI    | down | 39  | 155   |
|          | PWRX    | down | 69  | 224   |
|          | ALL EIM | down | 303 | 1,957 |
|          | AZPS    | up   | 23  | 235   |
|          | BANC    | up   | 4   | 53    |
|          | CISO    | up   | 81  | 1,634 |
|          | IPCO    | up   | 28  | 131   |
|          | NEVP    | up   | 23  | 257   |
|          | PACE    | up   | 75  | 291   |
|          | PACW    | up   | 55  | 197   |
|          | PGE     | up   | 24  | 206   |
|          | PSEI    | up   | 27  | 158   |
|          | PWRX    | up   | 52  | 228   |
| February | ALL EIM | up   | 119 | 1,935 |
|          | AZPS    | down | 12  | 202   |
|          | BANC    | down | 7   | 81    |
|          | CISO    | down | 91  | 1,616 |
|          |         |      |     |       |

|       | IPCO    | down | 59  | 210   |
|-------|---------|------|-----|-------|
|       | NEVP    | down | 17  | 259   |
|       | PACE    | down | 79  | 269   |
|       | PACW    | down | 30  | 140   |
|       | PGE     | down | 42  | 238   |
|       | PSEI    | down | 39  | 163   |
|       | PWRX    | down | 73  | 286   |
|       | ALL EIM | down | 320 | 1,957 |
|       | AZPS    | up   | 27  | 235   |
|       | BANC    | up   | 3   | 53    |
|       | CISO    | up   | 201 | 1,652 |
|       | IPCO    | up   | 48  | 152   |
|       | NEVP    | up   | 22  | 257   |
|       | PACE    | up   | 81  | 269   |
|       | PACW    | up   | 71  | 197   |
|       | PGE     | up   | 40  | 206   |
|       | PSEI    | up   | 38  | 158   |
|       | PWRX    | up   | 63  | 228   |
| March | ALL EIM | up   | 277 | 1,935 |
|       | AZPS    | down | 23  | 227   |
|       | BANC    | down | 6   | 81    |
|       | CISO    | down | 95  | 1,616 |
|       | IPCO    | down | 64  | 210   |
|       | NEVP    | down | 19  | 284   |
|       | PACE    | down | 79  | 301   |
|       | PACW    | down | 45  | 140   |
|       | PGE     | down | 48  | 238   |
|       | PSEI    | down | 46  | 178   |
|       | PWRX    | down | 71  | 289   |
|       | ALL EIM | down | 249 | 1,957 |
|       |         |      |     |       |

 Table 8: Flexible ramping requirements

The flexible ramping procurement diversity savings for all the intervals averaged over the month are shown in Table 9. The percentage savings is the average MW savings divided by the sum of the four individual BAA requirements.

|                         | January |       | February |       | March |       |
|-------------------------|---------|-------|----------|-------|-------|-------|
| Direction               | Up      | Down  | Up       | Down  | Up    | Down  |
| Average MW saving       | 715     | 769   | 806      | 821   | 830   | 814   |
| Sum of BAA requirements | 1,606   | 1,731 | 1,699    | 1,781 | 1,807 | 1,770 |
| Percentage savings      | 44%     | 44%   | 47%      | 46%   | 46%   | 46%   |

Table 9: Flexible ramping procurement diversity savings in Q1 2020

Flexible ramping capacity may be used in RTD to handle uncertainties in the future interval. The RTD flexible ramping capacity is prorated to each BAA. Flexible ramping surplus MW is defined as the awarded flexible ramping capacity in RTD minus its share, and the flexible ramping surplus cost is defined as the flexible ramping surplus MW multiplied by the flexible ramping EIM-wide marginal price. A positive flexible ramping surplus MW is the capacity that a BAA provided to help other BAAs, and a negative flexible ramping surplus MW is the capacity that a BAA received from other BAAs. The EIM dispatch cost for a BAA with positive flexible ramping surplus MW is increased because some capacities are used to help other BAAs. The flexible ramping surplus cost to reflect the true dispatch cost of a BAA. Please see the Benefit Report Methodology for more details.

# 

Using state-of-the-art technology to find and deliver low-cost energy to meet real-time demand across eight western states and extending to the border with Canada, the Western EIM has proven extensive financial and operational benefits for participants. Since its inception in November 2014, the cumulative gross economic benefits have reached \$919.69 million.

The Western EIM provides significant environmental benefits through the reduction of renewable curtailments during periods of oversupply. Sharing resources across a larger geographic area reduces greenhouse gas emissions by using renewable generation that otherwise would have been turned off.

The quantified environmental benefits from avoided curtailments of renewable generation from 2015 to-date reached 470,245 metric tons of CO2, roughly the equivalent of avoiding the emissions from 98,867 passenger cars driven for one year.

The Western EIM demonstrates that utilities can realize cost benefits and reduce carbon emissions through increased coordination and optimization in the West.