Congestion Revenue Rights (CRRs): Overview and Introduction to Current Issues

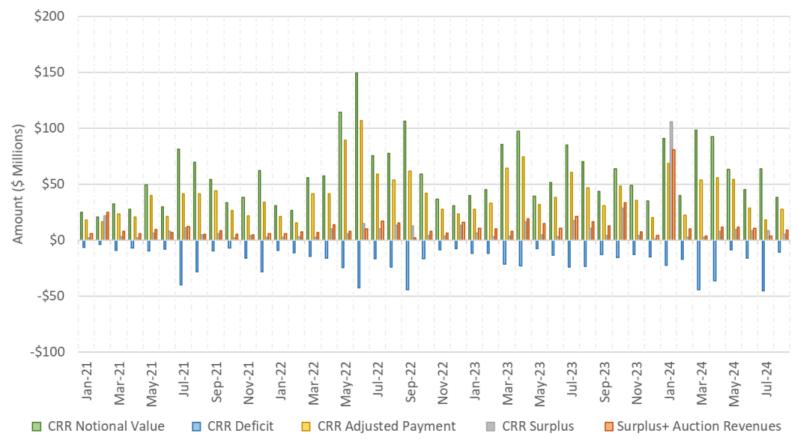
Part 2: Congestion Rights in Other RTOs and Recent CAISO Reforms Seth Cochran Head of Strategic Market Policy, Vitol September 27th, 2024

Organized markets utilize different methods to allocate congestion rents through financial transmission rights

	Allocation methods	Source of Entitlement
CAISO	Congestion Revenue Rights	Contracts and Load
MISO	Auction Revenue Rights	Transmission Service and upgrades
PJM	Auction Revenue Rights	Transmission Service and upgrades
ISO-NE	Auction Revenue Rights	Contracts and upgrades
NYISO	Transmission Congestion Contracts	Contracts
SPP	Auction Revenue Rights	Transmission Service and upgrades
ERCOT	Congestion Revenue Rights	Captive Load

Financial Transmission Rights auctions support allocated FTRs

- Direct allocations can be sold into the auction
 - Provides opportunity to monetize congestion value up-front prior to flow date
 - Possibly up to one-year in advance
- Auction Revenue Right holders have the option to receive the value of congestion determined in the auction or "self- schedule" in the auction and accept the day-ahead market settlement of the path
- Financial transmission right products are offered as obligations in all RTOs/ISOs and PJM and ERCOT offer options as well
- Most RTOs and ISOs auction three time-of-use strips (e.g., OnPeak; Weekend OnPeak; OffPeak)


Financial transmission rights or "Congestion Revenue Rights" provide opportunities to provide nodal hedges

- Nodal markets come with nodal settlement and risk
 Generation settles at its node and load at aggregation points
- CRRs provide the opportunity to hedge basis risk
 - CRR are used to hedge settlement risk between hubs and generation and load points
 - Hubs are liquid trading points where entities contract forward (E.g., SP15)
 - Standardized contracts at a basket of nodes leads to increased market liquidity, which in turn lowers risk premiums
 - Bi-lateral markets do not provide sufficient liquidity at all nodal settlement locations (CAISO alone ~1100+ settlement points)

CAISO introduced three changes to its auction structure in January 2019

- Elimination of non-delivery paths for bidding in CRR auctions
 - Designed to reflect the need for basis hedges between generation and load points to aggregation points
- Pro-rata adjustments of CRR's settlement based on their contribution to revenue deficiency
 - CRRs no longer "fully funded"
 - Unique approach compared to other organized market regions
- Reduction of transmission capacity released in the annual process from 75% to 65%
 - Designed to improve the quality of the CRR hedge by decreasing the amount of CRRs that are likely to be infeasible in the day-ahead market

The magnitude of the overall CRR settlements saw an increase in the last 2 months

Source: https://www.caiso.com/documents/presentation-market-performance-and-planning-forum-sep-18-2024.pdf

2024 Allocation of Revenue Inadequacy By Constraint Type and Month

Constraint Type	Underfunding By Constraint Typ Revenue			% Underfunding	
High Voltage	\$ 298,000,1		(109,464,548)	-	
Interface	\$ 53,940,40	58 \$	(6,808,993)	-13%	
LowVoltage	\$ 87,913,5	43 \$	(52,317,870)	-60%	
NodalGroup	\$ 9,830,1	85 \$	(1,593,803)	-16%	
Nomogram	\$ 63,640,1	99 \$	(30,934,857)	-49%	

2024 Underfunding By Month (August through 8/26/24)

Month	Revenue		Underfund	ling	% Underfunding
Jan	\$8	39,252,356	\$	(21,878,639)	-25%
Feb	\$ 3	37,350,847	\$	(15,999,317)	-43%
Mar	\$ 9	98,137,497	\$	(45, 153, 219)	-46%
Apr	\$ 9	90,845,926	\$	(36,936,477)	-41%
May	\$ 6	60,117,335	\$	(10,388,500)	-17%
Jun	\$ 4	43,692,407	\$	(16,138,585)	-37%
الك	\$ 6	61,097,194	\$	(44,012,293)	-72%
Aug	\$ 3	32,830,987	\$	(10,613,040)	-32%

Source: Appian Way Energy Partners

2024 Allocation of Revenue Inadequacy By Constraint

CAISOBindingConstraints Sorted by UnderfundingPercentage 2024 through 8/26/24 (ExcludingConstraints with under \$250K Revenue)						
30440_TULUCAY_230_30460_VACA-DK_230_ER_1_1	\$	800,721	\$	(2, 106, 350)	-263%	
35621 IBM-HRJ 115 35642 METCALF 115 BR 1 1	S	982,697	s	(2,202,784)	-224%	
38851 NORTHERN 115 38852 SCOTT 115 BR 2 1	\$	413,078	\$	(787,420)	-186%	
34724 KRNOLJ 115 34738 MAGUNDEN 115 ER 1 1	\$	650,019	\$	(936,434)	-144%	
7820 TL 50002 IV-NG-OUT TDM	5	4,458,683	\$	(4,790,980)	-107%	
32214 RO OSO 115 30330 RO OSO 230 XF1	\$	24,031,633	\$	(24,696,459)	-103%	
34366 SANGER 115 34370 MCCALL 115 BR 3 1	S	2,640,816	s	(2,473,482)	-94%	
33020 MORAGA 115 32790 STATIN X 115 BR 3 1	Ś	389,508		(354,676)		
30733 VASONA 230 30735 METCALF 230 BR 1 1	Ś	2,784,689	ŝ	(2,491,119)	-89%	
34418 KINGSERG 115 34428 CONTADNA 115 BR 1 1	S	291.228	s	(259,295)	-89%	
31338 KONOCTI6 60.0 31344 EGLEROK 60.0 BR 1 1	Ś	4,365,501	Ś	(3,783,517)		
OMS15150384 ONTR-INVOKEXPING	Ś	310,554		(256,256)		
7820 TL23040 IV SPS NG	Ś	4.364.163		(3.583.652)	-82%	
OMS 14830999 IV-SCOutage NG	Ś	3.083.327	Ś	(2,460,012)		
OMSTV-SKOUTAGE NG	Ś	1,526,480	Ś	(1, 187, 358)	-78%	
6410 CP10 NG	S	1.442.755		(1,112,253)		
OMS 14831000 IV-SCOutage NG	ŝ	2,065,680	ŝ	(1,589,539)		
OMS 14973100 IV-SK Outage NG	Ś	954,909		(702,313)		
OMS50004 IV-ML OUTAGE NG	ŝ	891,903	ŝ	(581,973)		
OMS14513059 LOSENS BUS OUTAGE	Ś	2,278,202		(1,488,623)		
OMS 15570815 N-SK Outage NG	Ś	1,128,362	Ś	(646,505)		
31334 CLERLIVE 60.0 31338 KONOCTI6 60.0 BR 1_1	S	1.018.778	s	(570,372)	-58%	
MIGUEL BKS MKELWING	ŝ	12,858,375		(7, 179, 915)		
22357 NPFC1 230 22358 N/FFC 230 PS 1	S	536,026	S	(297,411)	-55%	
24801 DEVERS 500 24804 DEVERS 230 XF 1 P	S	9.545.808	s	(4.695.937)	-49%	
OMS15079029 50001 OOS NG	Ś	329.858	Ś	(160,705)	-49%	
30055_GATEST 500_30060_MIDWAY_500_BR_1_1	S	54,448,078	S	(26,285,388)	-48%	
24801 DEVERS 500 24804 DEVERS 230 XF 2 P	S	15.554.584		(7,496,153)	-48%	
7820 TL 230S TL50001OUT NG	Ś	868,892	Ś	(396,977)		
7820 TL 230S OVER OAD NG	Ś	1.844.632	ŝ	(811,129)		
30055 GATES1 500 30057 DIABLO 500 ER 1 1	ŝ	295,975	-	(128,124)		
OMS 15080878 Suncrest BK81	Š	312,230		(132,846)		
34454 RVERROC 70.0 34464 COPPRVINE 70.0 ER 1 1	ŝ	558.284	-	(232,740)		
PALOVROE ITC	Š	3,358,380	-	(1,388,380)		
30790_FANOCHE_230_30900_GATES_230_BR_2_1	Š	8,708,450		(3,539,613)		
30040 TESLA 500 30050 LOSBANOS 500 BR 1 1	ŝ	53,189,882		(21, 152, 929)	1	
OMS 15334647 50004 OUTAGE NG	Š	255,967		(98,582)		
Remaining Constraints	Š	279,280,886		(54,881,112)		

Source: Appian Way Energy Partners