

Digital Integrated Tools for the Grid

Western Energy Imbalance Market Regional Issues Forum

June 21, 2023

Confidential

CEVE a

GRID INTELLIGENCE, DELIVERED.

Combining the only truly integrated analytics and machine learning solution for the grid

Econometric Analytics

Measures human and market influences on grid operations for accurate time scale analysis

Physics-Aware Grid Modeling

Down to the wire resolution with multi-year forecasting capabilities

Solutions without all three capabilities don't stand up in the real world.

kevala⁺

Kevala has unmatched visibility and insight

Utility Data

Kevala

A single resource for ANY question about grid decarbonization.

kevala⁺

CONFIDENTIAL

State Electrification Impacts Study: Part 1 Summary

The Context

 In support of a state regulatory agency, Kevala developed a hyper-granular forecast through 2035 that provides insights into *where* and *when* the distribution grid will need enhancements and the potential costs

of meeting these needs exclusively with distribution assets.

Bottom-Up Load Adoption Model and System-Level Electrification Cost Estimate: Estimate scale of electrification impacts from the bottom up; enable premise- and circuit-specific grid integration analysis

Staff Proposal:

Support development of Staff Proposal on Distribution Planning Process

The Approach

- Individually model baseline load growth, distributed energy resource (DER) adoption and DER behavior for 12 million calibrated to the state's current load forecast.
- Analyze four alternate scenarios calibrated to different zero-emissions vehicle (ZEV) forecasts and two net-energy metering (NEM) tariffs.

2035 Feeder-Level Capacity Overloading under Accelerated High Electrification

The Results

- Using current processes and without any mitigations, Kevala estimates tens of billions in distribution investments to support electrification through 2035.
- Utilities risk missing the where and the when of necessary distribution system upgrades without additional and continuous analysis of data and longer distribution planning horizons.

Upgrade costs estimates through 2035

 ⁽¹⁾ Base Case IEPR 2021
(2) High Electrification + Existing BTM Tariffs
(3) High Electrification + Modified BTM Tariffs
(4) Accelerated High Electrification + Existing BTM Tariffs
(5) Accelerated High Electrification + Modified BTM Tariffs

cevala

Confidential

Electrification Impact Study (EIS) - Overview

A new full-scale approach to premise-level analysis that identifies <u>where</u> and <u>when</u> the distribution grid will need enhancements under specific policy or planning scenario assumptions

Forecasted Net Loads

- Estimate net loads at a premise level
- Incorporate adoption of PV, Batteries, Electric Vehicles, and Building Electrification
- Aggregate premise load to locations on the grid
- Generate scenarios of adoption of DERs to test range of outcomes

- Identify current capacity from secondary transformers to sub-transmission feeder banks
- Determine additional capacity needs due to forecasted net loads
- Determine range of capacity needs based on scenarios of DER adoption

Locational Costs

- Estimate unit costs to meet capacity needs
- Determine incremental capital investments to meet capacity needs
- Quantify revenue requirement and marginal costs by distribution asset
- Aggregate grid asset marginal costs by location

Physical Scope of EIS

Scope of EIS

Baseline Net-Load: Objective

The development of a baseline net-load forecast by premise is that incorporates varied assumptions of demand modifiers to generate is needed to generate estimates of the where and the when of capacity needs at a secondary transformer, feeder, feeder bank, and substation across all three IOU service territories.

kevala⁺

Baseline Net-Load: Approach

2

Data Ingestion

Import key data into the platform to include but not limited to:

- AMI
- SCADA
- Weather (e.g., temperature),
- Rate schedules
- · Electrical infrastructure
- Premise information (e.g., building characteristics, census data)
- Technology adoption (e.g., PV, EV and storage)
- EE programs
- Asset costs

Net-Load Baseline Simulation

Create a baseline forecast of hourly net-load (feeder-level load less feeder renewable generation)

- Simulate premise load and expected (current plus baseline projected growth) using AMI, weather, premise, and technology adoption information
- Using electric infrastructure data, aggregate loads by feeder then substation, etc.
- Generate IOU and cumulative IOU baselines
- Generate IEPR-scaled forecast for 2022

Hourly Demand-Side Modifiers

Using available data, create hourly load modifiers for DER and EE technologies:

- Develop a catalog of EE and BE end-use shapes, equipment specifications, and estimated savings
- Leveraging Kevala's bill impact analysis capabilities and NREL's PVWAtts, simulate PV or PV+storage profiles
- Calibrate EE, BE, PV, and storage using the IEPR targets
- Develop premise level LDV, MDV, and HDV adoption and behavior impacts across CA and calibrating to current EV forecasts scenarios that reflect various policy ambitions and expectations.

Net-Load Impacts/Analysis

Combine load and DER forecast to calculate the netload at different grid aggregation levels:

- Calculate energy and peak load at IOU and different grid asset levels by customer sector and DER of load and DER forecast scenarios
- Calculate grid upgrade costs at service transformer, feeder, transformer bank, and substation levels
- Calculate energy burden at the census block level using bill calculation costs and household income

kevala⁺

3

Carbon Tracking Pilot

Across a complicated large territory, there can be times when grid carbon intensity is generally similar. But there are significant differences through time and geography.

kevala⁺

Pilot Results

kevala⁺

Confidential