

Energy Imbalance Market Technical Workshop

BAA Real-Time Congestion Balancing Account August 12, 2013

Overview

- BAA Real-Time Congestion Balancing Account
- Real-Time Convergence Bid Settlement

BAA Real-Time Congestion Balancing Account

- Calculate total real-time neutrality amount by BAA
 - Net of all imbalance energy settlements
 - 15-min and 5-min Instructed Energy settlement
 - Generating/intertie resources, participating load, NGR
 - Uninstructed Imbalance Energy settlement
 - Non-participating load (hourly)
 - Generating/intertie resources, participating load, NGR (5-min)
 - Unaccounted For Energy (5-min)
- Extract congestion offset by BAA
 - Net of marginal congestion cost contributions from all binding constraints in a BAA to all imbalances
- Allocate congestion offset to respective BAA

Example Assumptions

- CAISO BAA and two EIM BAAs
- Two generators and two loads in each BAA
- No Day-Ahead Market schedules
- No base schedules
- Single Real-Time Market interval: one hour
- No transmission losses
- Transmission Congestion in each BAA
- Generator meter equals schedule
- LMPs are indicative (no OPF solver)

BA	\mathbf{A}_{1}	BA	\mathbf{A}_{2}	CAI	SO	
G_1	80	G_3	60	G_5	60	
G_2	50	G_4	90	G_6	60	
L_1	40	L_3	30	L_5	100	
L_2	60	L_4	70	L_6	100	
NSI ₁	+30	NSI_2	+50	NSI ₀	-80	
				r	G_1 L_1	$\begin{array}{c c} TL_1 & 30 \\ \hline \\ BAA_1 \\ \hline \\ T_3 \\ \end{array}$
			CAISO)		BAA_2
	L ₅	20	TL ₃		G ₆ L ₆	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Shift Factors and Power Flow Contributions

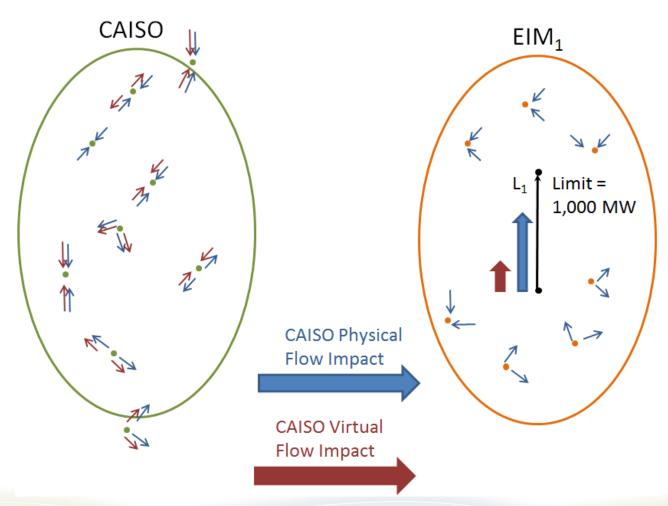
Resource	Schedule	T	L_1	T	L_2	T	L_3
		SF	Flow	SF	Flow	SF	Flow
G_1	80	0.70	56.00	0.02	1.60	0.02	1.60
G_2	50	-0.60	-30.00	0.03	1.50	0.08	4.00
L_1	-40	0.40	-16.00	0.04	-1.60	0.05	-2.00
L_2	-60	-0.35	21.00	0.05	-3.00	0.20	-12.00
G_3	60	-0.20	-12.00	0.13	7.80	0.03	1.80
G_4	90	-0.15	-13.50	-0.20	-18.00	0.00	0.00
L_3	-30	0.05	-1.50	0.31	-9.30	0.10	-3.00
L_4	-70	0.00	0.00	-0.64	44.80	0.02	-1.40
G_5	60	0.20	12.00	0.02	1.20	-0.20	-12.00
G_6	60	0.30	18.00	0.05	3.00	0.40	24.00
L_5	-100	0.00	0.00	0.00	0.00	-0.60	60.00
L_6	-100	0.04	-4.00	0.08	-8.00	0.41	-41.00
Total	0		30.00		20.00		20.00

Marginal Congestion Cost Contributions

Res	Sch	TL_1				TL_2		TL_3		
		SF	SP	MCC	SF	SP	MCC	SF	SP	MCC
G_1	80	0.70		\$560	0.02	-	\$32	0.02		\$48
G_2	50	-0.60		-\$300	0.03		\$30	0.08	\$30	\$120
L_1	-40	0.40		-\$160	0.04		-\$32	0.05		-\$60
L_2	-60	-0.35		\$210	0.05		-\$60	0.20		-\$360
G_3	60	-0.20		-\$120	0.13		\$156	0.03		\$54
G_4	90	-0.15	¢10	-\$135	-0.20	Φ20	-\$360	0.00		\$0
L_3	-30	0.05	\$10	-\$15	0.31	\$20	-\$186	0.10		-\$90
L_4	-70	0.00		\$0	-0.64		\$896	0.02		-\$42
G_5	60	0.20		\$120	0.02		\$24	-0.20		-\$360
G_6	60	0.30		\$180	0.05		\$60	0.40		\$720
L_5	-100	0.00		\$0	0.00		\$0	-0.60		\$1,800
L_6	-100	0.04		-\$40	0.08		-\$160	0.41		-\$1,230
Total	0			\$300			\$400			\$600

Imbalance Energy Settlement

Res	Sch	MEC	Tl	L_1	T]	L_2	Tl	L_3	LMP	Payment
			SF	SP	SF	SP	SF	SP		
G_1	80		0.70		0.02		0.02		\$42.00	\$3,360
G_2	50		-0.60		0.03		0.08	\$30	\$53.00	\$2,650
L_1	-40		0.40		0.04	¢20	0.05		\$43.70	-\$1,748
L_2	-60		-0.35				0.20		\$46.50	-\$2,790
G_3	60		-0.20	\$10	0.13		0.03		\$48.50	\$2,910
G_4	90	\$50	-0.15		-0.20		0.00		\$55.50	\$4,995
L_3	-30	\$30	0.05		0.31	\$20	0.10		\$40.30	-\$1,209
L_4	-70		0.00		-0.64		0.02		\$62.20	-\$4,354
G_5	60		0.20		0.02		-0.20		\$53.60	\$3,216
G_6	60		0.30		0.05		0.40		\$34.00	\$2,040
L_5	-100		0.00		0.00		-0.60		\$68.00	-\$6,800
L_6	-100		0.04	0.08		0.41		\$35.70	-\$3,570	
Total	0									-\$1,300



BAA Real Time Congestion Balancing Account results

- BAA₁ congestion uplift on TL₁: \$300
- BAA₂ congestion uplift on TL₂: \$400
- ISO congestion uplift on TL₃: \$600

Physical and Virtual Base Schedule Flow Impact on EIM Constraint

Define BAA Real-Time Congestion Balancing Account by Flow Impact

$$RTCBA_{L}^{15\,\text{min}} = -\lambda_{L}^{15\,\text{min}} \sum_{n} \left[SF_{n,L}^{15\,\text{min}} \left(Q_{n}^{15\,\text{min}} - Q_{n}^{Base} \right) \right]$$
$$= \lambda_{L}^{15\,\text{min}} \left[FI_{L}^{Base} - FI_{L}^{15\,\text{min}} \right]$$

Where

 $\lambda_L^{15 \,\text{min}}$ is the shadow price of constraint L in 15 - minute market.

 $SF_{n,L}^{15\,\text{min}}$ is the shift factor of node n with respect to constraint L in the 15 - minute market.

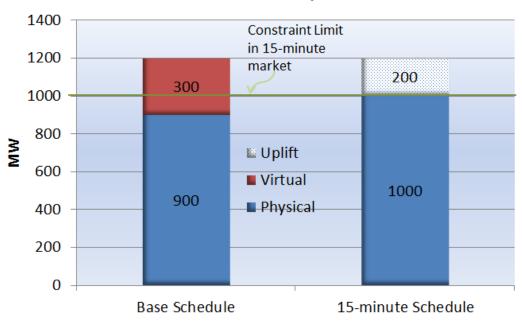
 $Q_n^{15 \text{ min}}$ is the net scheduled MW at node n in the 15 - minute market. Negative $Q_n^{15 \text{ min}}$ is a withdrawal.

 Q_n^{Base} is the net scheduled base MW, including both virtual and physical schedules, at node n. Base MWs for EIM BAs is the base schedule. Base MWs for CAISO is the IFM schedule.

 $FI_L^{15\,\text{min}}$ is the total scheduled flow impact on constraint L from 15 - minute market schedules.

 FI_L^{Base} is the total scheduled flow impact on constraint L from base schedules.

Define BAA Real-Time Congestion Balancing Account by Physical and Virtual Flow Impact


$$\begin{split} RTCBA_{L}^{15\,\text{min}} &= \lambda_{L}^{15\,\text{min}} \Big[FI_{L}^{\textit{Base}} - FI_{L}^{15\,\text{min}} \Big] \\ &= \lambda_{L}^{15\,\text{min}} \Big[\Big(FI_{L}^{\textit{Base:Physical}} + FI_{L}^{\textit{Base:Virtual}} \Big) - FI_{L}^{15\,\text{min}} \Big] \\ &= \lambda_{L}^{15\,\text{min}} \Big[FI_{L}^{\textit{Base:Physical}} - FI_{L}^{15\,\text{min}} \Big] + \lambda_{L}^{15\,\text{min}} \Big[FI_{L}^{\textit{Base:Virtual}} \Big] \end{split}$$

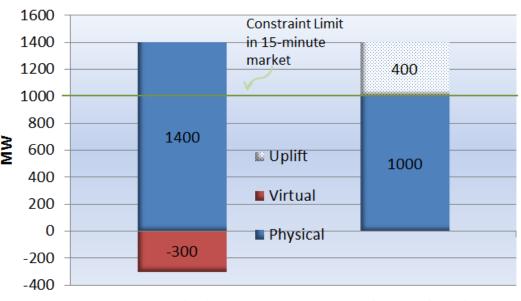
- BAA Real-Time Congestion Balancing Account from constraint L is function of:
 - Change in scheduled physical flows between base and 15minute schedules
 - Change in scheduled virtual flows between base and 15-minute schedules

Virtual Bid Revenue from Out-of-Market RT Congestion Uplift

Total Scheduled Flow Impact on Constraint

Base Virtual Flow Impact	Base Physical Flow Impact	15min Physical Flow Impact	Conges tion Uplift	Virtual Revenue from L ₁	Physical Revenue from L ₁	Out-of- Market Virtual Revenue	Out-of- Market Physical Revenue
300 MW	900 MW	1,000 MW	200MW * λ ^{15min}	$300MW * \lambda^{15min}$	-100MW * λ ^{15min}	200MW * λ ^{15min}	0

3rd Revised Straw Proposal: Virtual Allocation of BAA RT Congestion Balancing Account from EIM Entity Constraints

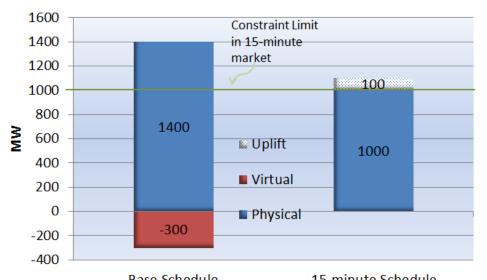

- Assign RT Congestion uplift from EIM BAA constraints into virtual bucket and physical bucket
 - In direct proportion to out-of-market congestion revenues received by virtual and physical schedules
- Allocate physical bucket to EIM Entity balancing account
- Allocate virtual bucket to virtual schedules
 - In proportion to each schedule's receipt of the out-of-market revenues
- Approach is only applied where there is an out of market charge
- RT congestion uplift allocation to virtual schedules for EIM-BA constraint L:

$$\lambda_L^{15\,\text{min}} * \left(\max\left[0, \min\left(FI_L^{Base:Virtual}, \left[FI_L^{Base} - FI_L^{15\,\text{min}}\right]\right) \right) \right)$$

Problem with 2nd Revised Straw virtual settlement proposal

Total Scheduled Flow Impact on Constraint

Base Schedule

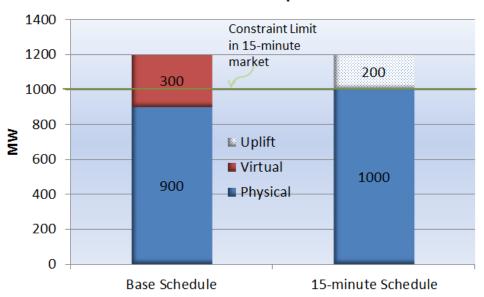

15-minute Schedule

Base Virtual Flow Impact	Base Physical Flow Impact	15min Physical Flow Impact	Conges tion Uplift	Virtual Revenue from L ₁	Physical Revenue from L ₁	Out-of- Market Virtual Revenue	Out-of- Market Physical Revenue
-300 MW	1,400 MW	1,000 MW	400MW * λ ^{15min}	-300MW * \$0	$400MW$ * λ^{15min}	0	400MW * λ ^{15min}

Virtual Allocation Example: Virtual Counter-flow

Total Scheduled Flow Impact on Constraint

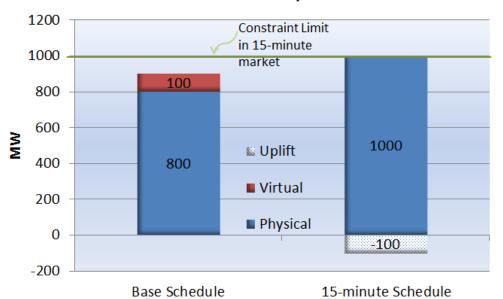
Virtual Allocation:


$$\lambda_L^{15 \min} * \left(\max \left[0, \min \left(FI_L^{Base:Virtual}, \left[FI_L^{Base} - FI_L^{15 \min} \right] \right) \right) \right)$$

Base Virtual Flow Impact	Base Physical Flow Impact	15min Physical Flow Impact	Conges tion Uplift	Virtual Revenue from L₁	Physical Revenue from L ₁	Out-of- Market Virtual Allocation	Out-of- Market Physical Allocation
-300 MW	1,400 MW	1,000 MW	100MW * λ ^{15min}	-300MW * λ ^{15min}	$400MW$ * λ^{15min}	0	100MW * λ ^{15min}

Virtual Allocation Example: Revenues > Allocation

Total Scheduled Flow Impact on Constraint


Virtual Allocation:

$$\begin{array}{l} \lambda_L^{15\,\mathrm{min}} * \\ \left(\mathrm{max} \left[0, \mathrm{min} \left(FI_L^{\mathit{Base:Virtual}}, \left[FI_L^{\mathit{Base}} - FI_L^{15\,\mathrm{min}} \right] \right) \right] \end{array}$$

1	Base Virtual Flow Impact	Base Physical Flow Impact	15min Physical Flow Impact	Conges tion uplift	Virtual Revenue from L ₁	Physical Revenue from L ₁	Out-of- Market Virtual Allocation	Out-of- Market Physical Allocation
3	300 MW	900 MW	1,000 MW	200MW * λ ^{15min}	300MW * λ ^{15min}	-100MW * λ ^{15min}	$200MW * \lambda^{15min}$	0

Virtual Allocation Example: Virtual Revenues with no Allocation

Total Scheduled Flow Impact on Constraint

1,000 MW

Virtual Allocation:

-200MW

* λ15min

$$\begin{array}{l} \mathcal{X}_{L}^{15\,\text{min}} \ * \\ \left(\max \left[0, \min \left(FI_{L}^{\textit{Base:Virtual}}, \left[FI_{L}^{\textit{Base}} - FI_{L}^{15\,\text{min}} \right] \right) \right] \end{array}$$

0

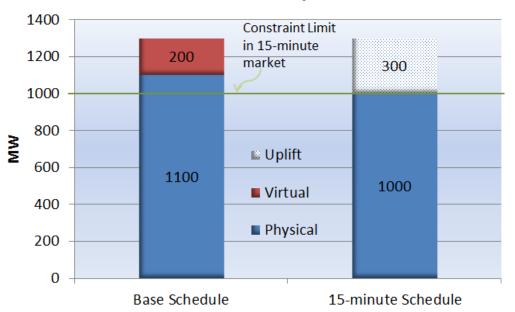
Base	Base	15min	Conges	Virtual	Physical	Out-of-	Out-of-
Virtual	Physical	Physical	tion	Revenue	Revenue	Market	Market
Flow	Flow	Flow	uplift	from L₁	from L₁	Virtual	Physical
Impact	Impact	Impact	·	·	·	Allocation	Allocation
•	•	•					

100MW *

λ^{15min}

-100MW

* λ15min


800 MW

100 MW

0

Virtual Allocation Example: All Virtual Revenues Out-of-Market

Total Scheduled Flow Impact on Constraint

Virtual Allocation:

$$\lambda_L^{15\,\mathrm{min}} * \\ \left(\mathrm{max} \left[0, \mathrm{min} \left(FI_L^{\mathit{Base:Virtual}}, \left[FI_L^{\mathit{Base}} - FI_L^{15\,\mathrm{min}} \right] \right) \right) \right)$$

Base Virtual Flow Impact	Base Physical Flow Impact	15min Physical Flow Impact	Conges tion uplift	Virtual Revenue from L₁	Physical Revenue from L ₁	Out-of- Market Virtual Allocation	Out-of- Market Physical Allocation
200 MW	1,100 MW	1,000 MW	300MW * λ ^{15min}	$200MW * \lambda^{15min}$	100MW * λ ^{15min}	$200MW * \lambda^{15min}$	$100MW * \lambda^{15min}$