A Brief Introduction to EIM Bidding and Market Design

9/7/2017

Susan Hill Portland General Electric

But First – a disclaimer

- <u>This presentation should not be considered a</u> <u>recommendation for EIM bidding strategy.</u>
- The context of this presentation assumes:
 - Hourly load conforms to your base schedule
 - EIM resource characteristics currently in place
 - No congestion
 - No Bid Cost Recovery (BCR)
 - "Load" includes transactions that are scheduled ahead of time (Bilateral trades, etc...)
 - Only energy costs does not address commitment cost bidding

Example: A 300 MW base schedule is not settled for the entire 300 MW. It is only settled for the incremental MWH that are above and/or below 300 MW during the hour.

EIM is an Incremental Market

- You are settled against the plan of the "base schedule"
 - Generation transactions only occur for deviations from the plan to meet your load
 - Generators are paid the LMP prices for the MW generated above your plan
 - Generators are charged the LMP prices for the MW decremented below your plan*
- Bids should be made on an incremental basis, not an average "all in" cost

GridRUS Participating Resource

Cost Basis "Incentive"

The EIM is structured to encourage bidding resources very close to actual cost/value for a range around the base schedule.

EXAMPLE:

GridRUS has a participating resource that is base scheduled at 300 MW

The true incremental cost of the previous and next 20 MW (281 MW to 320 MW) is approximately \$25/MW

Example: Bid Price & Dispatch

GridRUS Submits an energy bid of 25\$ / MW for +/-20 MW around base schedule of 300 MW.

The unit will move such that:

Sales will be made at LMP>25\$, and purchases will be made at LMPs <25\$. GridRUS kept whole to costs.

5

Bids are not only used to stack resources for native load, but also used for a sale (or purchase) from a neighboring **EIM** member.

Moral:

Inflating costs to improve margin may backfire.

Bidding near costs ensures lowest cost optimization of the native load system.

Example: Cost Bidding Incentive

One day a GridRUS Trader decides to Bid 30\$ instead of the \$25 cost for the same range, trying to improve off system sales margin

- •RISKY! The LMP goes to 28\$, and the unit is moved down to 280 MW.
- The market now believes it is optimizing by shutting down the higher cost power (30\$) and selling "cheaper" (\$28) resources to GridRUS.
- This results in \$25 cost power being replaced with \$28 power. This increases costs 3\$ / MWH above the actual cost GridRUS would have normally incurred to meet its own load.

Bids and the Base Schedule / Load Forecast work hand in hand in the EIM

Base Schedule and Loads

- The Base Schedule is an hourly look at loads
- Even if no off system EIM transfers are occurring, a participating resource may be under or over its base schedule within the hour
 - Base Schedule is a single point in the hour
 - There may also be load forecast error
 - Other resources are not operating to base schedule (e.g. wind, reliability)

Bidding range gives flexibility to economically optimize for native load intra-hour

EIM Market Design

EIM market is designed to encourage bidding around the base schedule very close to cost

Summary

- A participating unit can be under or over its base schedule at any given time. To ensure best optimization for native load, bidding near cost is encouraged by market design
- The EIM optimizes all participants at the same time, so intra-hour cost based margins are shared and spread across the footprint, resulting in economies of scale at cost.
- Graduated bidding strategies above and below base schedule range may offer some additional margin for EIM transfers

Questions?

PGE

ili