#### WESTERN ENERGY IMBALANCE MARKET

# Briefing on Western Energy Imbalance Market Price Formation

George Angelidis Principal, Power Systems Technology Development

EIM Governing Body Meeting General Session September 6, 2017



## Locational Marginal Price Definition

- The marginal cost of serving the next increment of demand at a network location
- Derived from sensitivity analysis at the optimal solution of the EIM
- Has four components:
  - System marginal energy cost (SMEC)
  - Marginal cost of congestion (MCC)
  - Marginal cost of losses (MCL)
  - Marginal cost of greenhouse gas regulation (MCG)
    - Only in EIM Balancing Authority Areas (BAAs)





# System Marginal Energy Cost (SMEC)

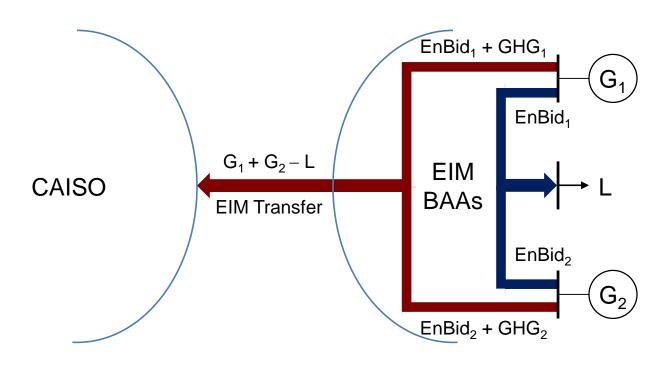
- Same at all network locations
- Sensitivity cost (shadow price) of the EIM Area (CAISO and EIM BAAs) power balance constraint:
  - $\Sigma$ (Generation)  $\Sigma$ (Load) Losses = 0



# Marginal Cost of Congestion (MCC)

- Varies by location
- Sensitivity cost (shadow price) of the EIM BAA power balance constraint (PBC):
  - Σ(BAA\_Generation) Σ(BAA\_Load) BAA\_Losses = BAA\_Energy\_Transfer
  - No power balance constraint for the CAISO BAA (redundant)
- Minus all binding constraint contributions:
  - Product of the sensitivity cost (shadow price) of binding constraint and the Power Transfer Distribution Factor (PTDF) for the location to the constraint
    - PTDF: percentage of power injection at the location that causes/relieves congestion on the constraint relative to a distributed load reference






## Marginal Cost of Losses (MCL)

- Varies by location
- Marginal Loss Rate (MLR):
  - Nonlinear; calculated from an AC power flow solution
  - Loss sensitivity at a network location: reflects change in losses due to incremental power injection at the location
  - Distributed load reference for absorbing the incremental power injection
- EIM BAAs:
  - -(SMEC + BAA\_PBC\_Shadow\_Price + MCG) \* MLR
- CAISO BAA:
  - ◆ -(SMEC + BAA\_PBC\_Shadow\_Price + MCG) \* MLR



## GHG Compliance Solution for EIM



Where:

EnBid<sub>i</sub>: Energy Bid for Generator i (\$/MWh)

GHG<sub>i</sub>: GHG Bid Adder for Generator i (\$/MWh)



# Marginal Cost of GHG Regulation (MCG)

- Same at all EIM BAA locations
- Negative sensitivity cost (shadow price) of the GHG allocation constraint:
  - CAISO\_Energy\_Transfer ≤ Σ(GHG\_Allocation)
- Positive if CAISO Energy Transfer is import (serving CA load)
- Zero if CAISO Energy Transfer is export
- Does not exist in CAISO BAA
  - For CAISO resources, the GHG regulation cost is included in the energy bids and is reflected in the SMEC

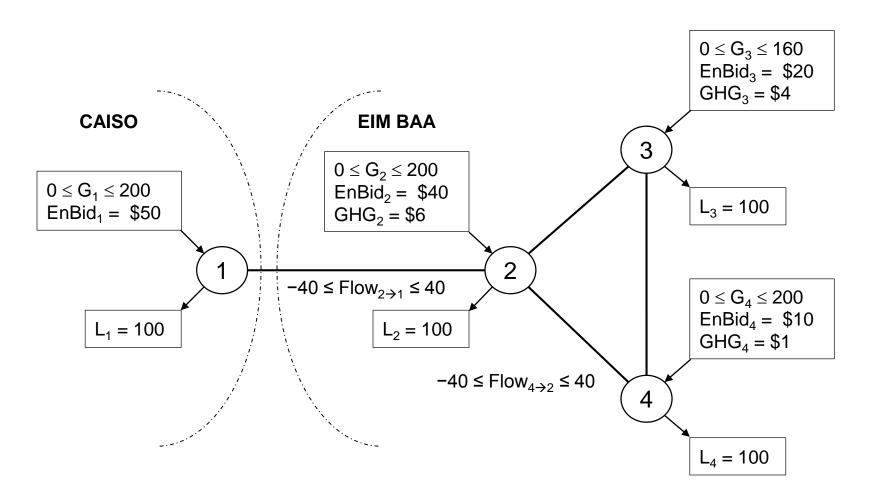




#### Locational Marginal Price Calculation

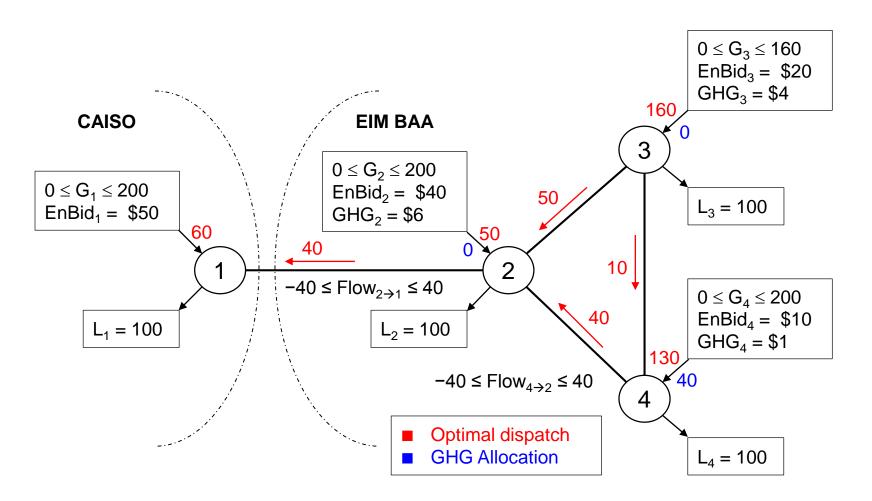
- The LMP is derived by adding all LMP components
  - EIM BAA location i:
    LMP<sub>i</sub> = SMEC + MCC<sub>i</sub> + MCL<sub>i</sub> + MCG
    MCG ≤ 0
  - ◆ CAISO BAA location i: LMP<sub>i</sub> = SMEC + MCC<sub>i</sub> + MCL<sub>i</sub>




#### WESTERN ENERGY IMBALANCE MARKET

# Locational Marginal Price Formation in the Energy Imbalance Market

Example

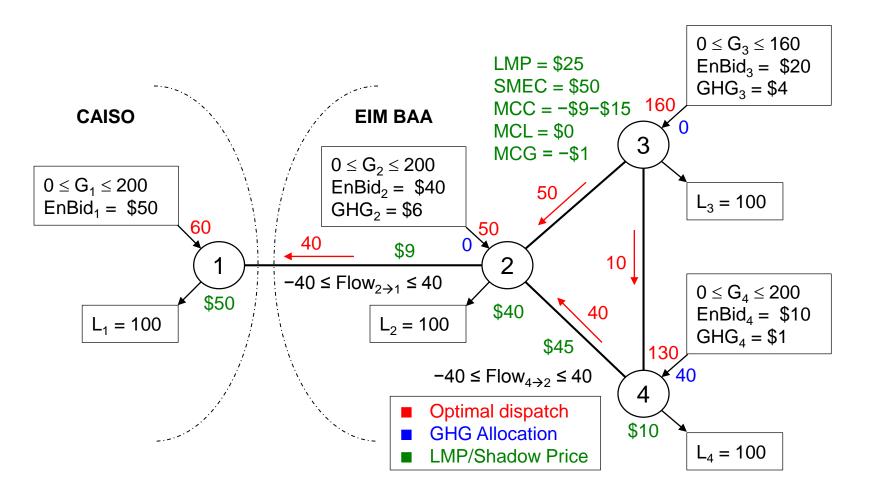



#### Example: Setup





#### **Example: Optimal Solution**








Slide 11

#### Example: LMPs





