WESTERN ENERGY MARKETS

Briefing on spotlight initiative – price formation enhancements

James Friedrich Lead Policy Developer

WEM Governing Body Meeting General Session October 28, 2025

Agenda and Objective

Objective: Provide foundational knowledge for future policy discussions.

Balancing Authority Area (BAA)-Level Market Power Mitigation (MPM)

- a) What problem does it solve?
- b) How does it work at a high level?
- c) Key insights

2. Scarcity Pricing

- a) What is it and why is it important?
- b) How does it function in our market?
- 3. The Interplay
- 4. Looking Ahead

The core problem market power mitigation addresses

Many connected suppliers

Competitive market

Transmission Constraints

When these bind, they tip the balance from competitive to isolated Limited local suppliers

Risk of market power

The Safeguard:

Market Power Mitigation

What is BAA-level market power mitigation?

Each dot represents a pricing node with the color scale indicating the price level.

Local MPM addresses congestion within a BAA.

BAA-Level MPM addresses congestion between BAAs.

Market regions isolate when transfer constraints bind.

These regions can no longer import cheaper energy and depend on a smaller number of suppliers.

How BAA-level MPM works

Detect

Assess

Mitigate

Import-Constrained Conditions

The market software detects when a BAA's energy costs rise above its neighbors.

Structural Competitiveness

The market assesses whether the BAA depends on its three largest suppliers. If the system couldn't meet demand without them, the BAA counts as noncompetitive for that period.

Competitive Reference Prices

The market compares bids against two cost-based reference prices and mitigates any amount above them before the market clears.

Changes discussed in the straw proposal

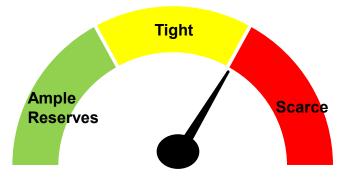
Shift to Grouping Approach

Test connected BAAs together

Include CAISO BAA in Test

Treat CAISO like any other BAA

Mitigate only Pivotal Suppliers


Avoid mitigation of fringe participants

Incorporate Net Position

Account for supplier's load-serving obligations

Together these changes reduce unnecessary mitigation, apply market power rules consistently, and better reflect incentives to exercise market power.

What is scarcity?

Scarcity happens when the grid is low on reserves.

- Normal Conditions: Ample generation is available to serve load and maintain reserves. Prices are set by the cost of the last generator needed.
- Scarce Conditions: The system struggles to meet both energy needs and reserve requirements.
 - Every megawatt of capacity becomes critically important for reliability.
 - The risk of a shortfall or emergency action (like shedding load) increases.

Theory of scarcity pricing

Scarcity pricing lets the market reflect the reliability value of reserves when resources are scarce.

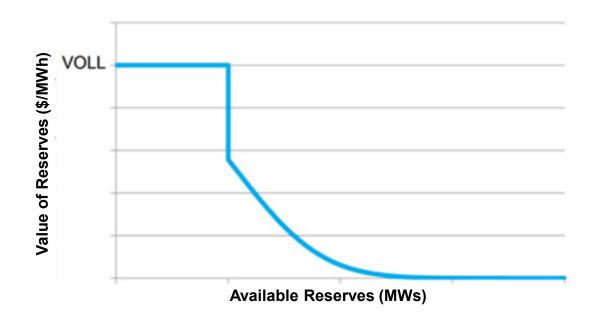


Chart adapted from ERCOT.

VOLL = Value of Lost Load; the estimated cost to society of a grid outage.

Why scarcity pricing improves reliability

Scarcity pricing sends a powerful economic signal that unlocks all possible resources to protect the grid.

Incentivizes more supply:

- Encourages all available generation to come online, offer to the market, and produce at maximum output.
- Signals to resources in neighboring BAAs to export energy alleviating risks in scarce areas.
- Directs WEIM transfers to the most urgent locations.

Incentivizes demand reduction:

- Signals battery storage to discharge and large consumers, flexible loads, demand response programs, and exports to curtail.
- Long-term investment signal:
 - Supports investment in resources needed for future reliability.

Changes discussed in the straw proposal

Preserve Scarcity Signals

Reflect opportunity cost of using capacity from contingency reserves in 5-minute market

Trigger Scarcity Pricing for Load Shedding Events

Activate highest market prices when operators shed load

Comprehensive Scarcity Pricing Design

CAISO will explore with stakeholders in the working group various options to implement comprehensive scarcity pricing

The interplay

A central challenge for market design is to distinguish scarcity from market power.

	Scarcity Pricing	Market Power Mitigation
Problem	A genuine system-wide shortage of available capacity.	An artificial shortage in a constrained area due to uncompetitive bidding.
Goal	Allow prices to reflect the true value of reliability.	Prevent uncompetitive prices due to market power.
Outcome	Legitimate high prices protect the grid.	Uncompetitive high prices are mitigated.

Conclusion and looking ahead

Key takeaways

- BAA-level MPM targets market power in situations where BAAs become isolated.
- Scarcity pricing uses price signals to manage tight system conditions.
- Both are fundamental features of a well-functioning, modern electricity market.

Looking ahead

- The market environment is evolving rapidly as regional markets expand.
- Through the Price formation enhancements initiative, ISO staff is actively working with stakeholders to review and refine these mechanisms to ensure they remain effective.
- We will bring formal policy proposals to the WEM Governing Body (primary authority) and ISO Board of Governors (consent agenda) for consideration in 2026.